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Current Industry Practices

GPGPU tradition holds that a data set is mapped to a 2D 
square, transformed by a monolithic fragment shader 
program, and then collected off the frame buffer. 

This presents problems for general data structures.  

The GPU wants sequentially flowing data, or will loose most of 
its speed due to bridge thrashing and randomly accessing 
memory.  

If we want to use the GPU for general purposes, we need to 
find a way to manage this limitation by eliminating the 
monolithic gpu application.



Justification for GPU-MMS

Data transfers from System DRAM (CPU memory) are 
bottle-necked at 6.4-8 GB maximum.

Internal (texture) memory organizations can utilize the 
full 35 GB/s rate of the GPU



Justification for GPU-
MMS

A v a i la b le  M e m o r y  B a n d w id t h  in  

D i f f e r e n t P a r t s  o f t h e  C o m p u t e r  S y s t e m

C o m p o n e n t B a n d w id t h

GPU M emory Interface = 35 GB/sec
PCI Express Bus (×1 6) = 8 GB/sec

CPU M emory Interface = 6.4 GB/sec
(800 M H z F r o n t-S i d e B u s)

Performance is maximized if we don't have to transfer our data back 
and forth across even the ultra-fast PCI Express bridge. 



GPU-MMS Data Paths
For the first time (nVidia 6 Series) 
we can read Texture memoryrender 
our Memory Partition data (output) 
back to Texture.

This allows us to completely avoid 
CPU-GPU data transfers except for:

Initially loading the GPU memory 
with data.

Recollecting that data for CPU 
purposes.



Notes
The CPU should be able to remotely control the GPU-MMS. 

Single control versus having two control models.

We can use the programmable vertex shader to reorganize our 
data by passing in signals.

We can control the vertex shader from the CPU by keeping an 
index of the GPU memory structure on the CPU. 

The GPU can reorganize its own data by executing row/column 
folding and/or other reconciliatory instruction within the 
vertex shader.  



Algorithm Theory
The CPU, by using a memory index, could construct a wave 

that would represent any combination of rows or columns.  
This wave could be sent to the vertex processor, which 
would warp the vertecies of our data-texture.  

This warping would allow only the requested data-set to be 
eliminated by the rasterization process.

This operation is almost free, because values can still be 
passed on to the fragment processor for manipulation on 
the same pass.



Render-To-Texture
http://oss.sgi.com/projects/ogl-sample/registry/EXT/framebuffer_object.txt

With the advancement of the new “Render-To-Texture” 
technology, we no longer have to endure the expense of 
reading the pBuffers.

Render-To-Texture allows us to render off-screen to framebuffer-
attachable images, or in specific, images in texture-memory. 

This creates a much faster, and more visually pleasing, method of 
collecting the post-processed data because it avoids the screen 
render and the expensive data-copy  call, CopyTexSubImage.
Uses a new object, renderbuffer.

Use BindFramebufferEXT to bind.



Example
We have a square object in 3D space with a data-

set texture-mapped to it.

Pixel rows represent individual objects of a certain 
schema

Pixel columns represent individual properties of 
the schema.

We want to run some operation on every other 
row (object).

We define a saw-tooth wave and apply it to the 
vertecies.

We transform the data set 45 degrees along the x-
axis.

We shrink our viewPort to fit the object to the 
screen

This leaves us looking orthographically at a set of 
steps, which is the exact data set that we 
wanted...  Every other row.


