
Project Footprint DocumentProject Footprint Document

Graphic Processing Unit (Graphic Processing Unit (GPUGPU))
Memory Management System (Memory Management System (MMSMMS))

Jason S. HardmanJason S. Hardman
Dr. Kalpathi R. SubramanianDr. Kalpathi R. Subramanian

The University of N. Carolina at CharlotteThe University of N. Carolina at Charlotte
Department of Computer SDepartment of Computer Science cience

Dark-box RememberDark-box Remember

Current Industry Practices

GPGPU tradition holds that a data set is mapped to a 2D
square, transformed by a monolithic fragment shader
program, and then collected off the frame buffer.

This presents problems for general data structures.

The GPU wants sequentially flowing data, or will loose most of
its speed due to bridge thrashing and randomly accessing
memory.

If we want to use the GPU for general purposes, we need to
find a way to manage this limitation by eliminating the
monolithic gpu application.

Justification for GPU-MMS

Data transfers from System DRAM (CPU memory) are
bottle-necked at 6.4-8 GB maximum.

Internal (texture) memory organizations can utilize the
full 35 GB/s rate of the GPU

Justification for GPU-
MMS

A v a i la b le M e m o r y B a n d w id t h in

D i f f e r e n t P a r t s o f t h e C o m p u t e r S y s t e m

C o m p o n e n t B a n d w id t h

GPU M emory Interface = 35 GB/sec
PCI Express Bus (×1 6) = 8 GB/sec

CPU M emory Interface = 6.4 GB/sec
(800 M H z F r o n t-S i d e B u s)

Performance is maximized if we don't have to transfer our data back
and forth across even the ultra-fast PCI Express bridge.

GPU-MMS Data Paths
For the first time (nVidia 6 Series)
we can read Texture memoryrender
our Memory Partition data (output)
back to Texture.

This allows us to completely avoid
CPU-GPU data transfers except for:

Initially loading the GPU memory
with data.

Recollecting that data for CPU
purposes.

Notes
The CPU should be able to remotely control the GPU-MMS.

Single control versus having two control models.

We can use the programmable vertex shader to reorganize our
data by passing in signals.

We can control the vertex shader from the CPU by keeping an
index of the GPU memory structure on the CPU.

The GPU can reorganize its own data by executing row/column
folding and/or other reconciliatory instruction within the
vertex shader.

Algorithm Theory
The CPU, by using a memory index, could construct a wave

that would represent any combination of rows or columns.
This wave could be sent to the vertex processor, which
would warp the vertecies of our data-texture.

This warping would allow only the requested data-set to be
eliminated by the rasterization process.

This operation is almost free, because values can still be
passed on to the fragment processor for manipulation on
the same pass.

Render-To-Texture
http://oss.sgi.com/projects/ogl-sample/registry/EXT/framebuffer_object.txt

With the advancement of the new “Render-To-Texture”
technology, we no longer have to endure the expense of
reading the pBuffers.

Render-To-Texture allows us to render off-screen to framebuffer-
attachable images, or in specific, images in texture-memory.

This creates a much faster, and more visually pleasing, method of
collecting the post-processed data because it avoids the screen
render and the expensive data-copy call, CopyTexSubImage.
Uses a new object, renderbuffer.

Use BindFramebufferEXT to bind.

Example
We have a square object in 3D space with a data-

set texture-mapped to it.

Pixel rows represent individual objects of a certain
schema

Pixel columns represent individual properties of
the schema.

We want to run some operation on every other
row (object).

We define a saw-tooth wave and apply it to the
vertecies.

We transform the data set 45 degrees along the x-
axis.

We shrink our viewPort to fit the object to the
screen

This leaves us looking orthographically at a set of
steps, which is the exact data set that we
wanted... Every other row.

