
Jumping Into The Deep End
An OOP Approach To GPU Game Architecture

[Paper Submittal: vgsp_0036]

Jason S. Hardman
DarkWynter Studios

Games and Learning Lab & Regional Visualization Center
University of North Carolina at Charlotte

Jason.S.Hardman@gmail.com

Figure 1) Use of a wave form algorithm in the Vertex Shader

Abstract

The current generation of gaming platforms
(Xbox360, Play Station 3) includes phenomenally
fast Graphics Processing Units (GPUs) that allow
the developer to program directly on the GPU.
This technology is called Shader Programming.

Far from being a simple “airbrushing” technique,
it has been shown that Shaders have all the
necessary components for doing General Purpose
computations on the GPU (GP-GPU). Given the
phenomenal speed of the GPU compared to the
CPU and its reputation for beating Moore's law
(3), this technology opens a doorway into a whole
new paradigm of game development...if we can
figure out how to use it.

In common practice, all this blindingly fast
computational power remains unharnessed in
video games today. This is best exemplified by
the short falling of Play Station 3 (PS3) games,
which occur despite the impressive statistics of
the Cell processor.

What follows is an outline of a general
programming structure compatible with ATI,

nVidia, and XBox GPUs. Research suggests that
the same techniques can be applied to the PS3,
though development in this area is just being
undertaken by the author.

Keywords: GPGPU, Shading, Application
Architecture

1 Introduction

The most common reason for the lack of GPGPU
computing in video games is the expense of
moving information across the CPU/GPU bridge.
It is often suggested that this is a major limiting
factor and that GPU algorithms will be hindered
until the transfer speed increases.

We propose that the problem is not bridge speed,
but a hesitation of the industry to jump into the
deep end of the pool. If enough computation is
pushed over the GPU, we do not need to pull
these values back to the CPU. For most
application developers, this will require a firm
commitment to building a robust architecture for
handling physics, as well as other modifiable
variables, in shader code. It also requires a new
way of thinking in terms of exactly how a GPU is
supposed to be used.

1

mailto:Jason.S.Hardman@gmail.com

2 Why The Fuss?

On a practical level, GPU development is hard.
Even the best tools are still in their infancy, and
debugging especially is tedious. There are no text
based outputs, no break statements, and rather
cryptic error messages.

As such, the best current approach seems to be to
develop, debug, and stabilize a CPU physics
model first. While this will generally increase the
development time of the project, it has benefits
beyond simplifying development. In particular,
this code can be left in the application to allow
support for lower model hardware by inserting a
few switch statements based on hardware
capabilities.

3 CPU Code Organization

From a survey of examples, tutorials, and books
on the subject, most shader development is
currently being done on a case-by-case basis.
Individualized algorithms are applied to each class
of objects. This is very much against the
principles of code reuse and modularity.

We propose a more general architecture for
organizing GPU resources in a manner that
promotes function reuse across multiple objects.

One of the keys to constructing a general
architecture for the GPU is the initial organization
of CPU information. By letting each object
handle its own draw and update functions, the task
of organizing becomes easier.

Information and methods to be ported to the GPU,
such as an object's physics properties and
methods, should be collected and organized using
Object Oriented Program (OOP) encapsulation
techniques. Information passed to these methods
can then be treated like signals and passed to the
GPU in a robustly defined manner.

In our game, EleMental, we have set forth the
purpose of avoiding smoke and mirrors and
creating a fully interactive environment. This
includes the manipulation of several thousand
particles representing base elements such as earth,
wind, and water.

We started this process by defining what we are
calling a Mass object. It contains all physics
properties of an object such as position, mass,
scale, velocity, and adhesion. By creating a Mass
object for every object in the environment, we
maintain consistency of format, which will be
beneficial to us as we begin converting these
values into a GPU friendly data format. The only
physics methods that cannot be encapsulated in
this way are those related to collision detection,
which inherently must be able to compare
multiple objects at a time.

Figure 2) Elemental by DarkWynter
A game based on real world physics and particle interaction

Once this organization is done, the process or
porting to the GPU becomes simpler. All that is
left is to convert the Mass encapsulated physics
functions into Shader code.

Once this port is done, the collision functions can
handle passing values to the shader, which
handles updating the physics values on the GPU.

2

4 GPU Data Organization

CPU to GPU data types come in two flavors:

Global Variables
Uniforms are standard read/write variables that
are set by the CPU, and can be accessed by either
the Vertex or Fragment Processors. They retain
their values until the CPU modifies them (7).

Uniforms can also be used as control signals to a
larger architecture. This type of usage is
addressed later in this paper.

Texture Data Objects
The use of textures as a medium for data can be
complicated and should generally be ignored until
an application begins bottlenecking at the
CPU/GPU bridge.

Except for RenderToTexture techniques, textures
can be thought of as read-only data. Textures are
a good way to pass large sets of relatively static
data to the GPU. For organizational purposes it is
suggested that each object be assigned to a row
and each property of the object to a column or
vise-versa.

Stream Structures
Stream values originate from the CPU with
variables like position, texture coordinates, and
normals, and are passed from vertex to fragment
shader using varying variables. These variables
are interpolated by the rasterizer as they are
passed from the Vertex to the Fragment processor.
These values eventually come to rest in the frame
buffer or frame buffer object depending on the
programmer's decision.

It is very useful to organize these variables into
separate structures for vertex input, vertex output,
fragment input, and fragment output. Larger
applications may also want to include
intermediate structures for organizing properties
internal to the vertex or fragment shader.

By mapping these structures to the underlying
semantics provided by the hardware (e.g. position,
textureCoordinateN, colorN), we decrease the
likelihood of “crossing wires” as we move
information from the input semantic to the output
semantic. This translation is necessary because
different semantics are used for the vertex input,
vertex output, fragment input, and fragment
output.

For example, the Vertex Shader Input semantics
include variables for tangent and binormal. These
values must be mapped to texCoord variables if
they are to be sent to the Fragment Shader. The
number of variables that can be interpolated is
very limited so a consolidated set of variables
must be chosen wisely.

We recommend including normals, binormals,
tangents, screen vectors, and light vectors in this
translation process. These variables, along with
the object space, world space, and view space
matrices, provide a mathematical basis from
which other values can be derived.

5 GPU Instruction Sequencing

It is recommended that both the Input and Output
structs for Vertex and Fragment shaders should be
passed to their respective sub functions. This
ensures that each function has access to both the
incoming variables and any previously calculated
output variables. The sequence of function calls
is very important, as it must ensure that values
calculated in one function do not clobber
previously calculated values.

Both vertex and fragment shaders should begin by
establishing a mathematical basis using the
incoming stream structures. This makes these
values available to any other functions that require
them and helps to maintain code cleanliness and
organization.

3

Vertex effects, in particular, must be carefully
sequenced because the modification of a position
or texture coordinate by one function can greatly
affect another. In general, position-modifying
functions should be saved until last to guard
against errors and clobbered values.

Fragment functions deal more with color and,
thus, are a bit safer to work with. It should be
noted that each function should check for
previously calculated output colors and use
blending to modify the value. In particular, it is
suggested that lighting calculations be saved until
after color modification functions have completed.
This will ensure that the final output color is
correctly lit.

6 Control Signals
Simple CPU signals like the current position can
be passed to the GPU using Uniform variables.
For simple applications or applications with a
small number of values to pass, this can be a very
effective approach.

Uniform signals apply to the object in its entirety.
World location and orientation parameters for a
dynamic object are a good example of proper
usage. Other recommended uses include
incrementors for controlling animations and
parameters to scale effects based on temperature,
intensity, or velocity.

For applications where the overhead of
transferring information to the GPU creates a
bottleneck, the use of Texture Data Objects and
RenderToTexture technology can provide a
reasonable solution. This requires either a second
update pass, or the ability to render to multiple
targets, one being the frame buffer and the others
being the object textures.

7 Instructions, Clock Cycle and
RenderToTexture
RenderToTexture from the GPGPU perspective is
often thought of as a data output mechanism
providing feedback to the CPU.

The basic idea is to take data from the texture into
the shader, run computations on it, and render it
onto the same texture using a unit-quad. To
ensure data integrity, a one-to-one texel-to-pixel
ratio must be kept. This can be done by setting
the viewport size to that of the texture and
rendering in orthographic mode. Multiple
textures can be updated per pass by applying
multiple textures to the quad at render time and
adjusting the viewport accordingly.

From an engineering perspective it should be
noted that this technology marks the end of a
clock cycle for the GPU processor. Thinking in
these terms leads us to the natural question of how
much time is necessary to complete a complex
instruction. Since shader code runs at different
frequencies dependent upon the length and
computational complexity of the code, we must
also address the question of whether a RISC
(Reduced Instruction) or CISC (Complex
Instruction) style is preferable for general-purpose
GPU architecture.

From examining publicly available code, we have
found that most shader programmers have applied
the CISC methodology, creating long and
complex shader programs to attach to their
objects. This approach has the natural
disadvantage of reducing the re-usability of this
code in other objects due to the specialization of
its instruction.

A medium ground is found in modularizing a
general shader into functional units that can be
called from the main program. This is an
effective strategy for increasing the portability and
reusability of shader code, and is the strategy that
we have adopted in EleMental. It should be noted
that this is not a very effective strategy for
GPGPU heavy applications, however, because it
is difficult to modify the sequence in which
function calls are made while ensuring that
variable clobbering does not occur.

4

Another approach makes the observation that
shading languages are still very similar to the
assembly languages they are built on. By using a
RISC approach to shader creation, we can create a
small and complete set of independent shader
“instructions”, which run much faster than the
traditionally long and complex shaders.

By using RenderToTexture at the end of each
shader call, it is possible to batch process a large
number of shader “instructions” in-between
graphical frames. This appears to be a very
effective strategy when using
VertexBufferObjects to drive the process, as the
overhead of sending vertexes, normals, and
coordinates across the expensive CPU/GPU
bridge is avoided.

Processing values this way requires extensive use
of the discard keyword in the shader to avoid
overwriting values that are not applicable to a
given operation.

8 GPU Memory Management
For applications with extremely volatile data,
memory management techniques must be applied
to the GPU textures to reduce fragmentation,
which is caused by objects being added and
removed from the textures.
.
A traditional approach is to pull this information
back to the CPU, reorganize the data, and push it
back to the GPU. This is extremely slow. To
maximize efficiency, we want to reorganize the
texture data on the GPU itself. A solution to this
problem can be found in the vertex processor.

We must first note that a there is a relationship
between the Texture Coordinate (input location of
texture data) and the Vertex Coordinate (output
location of the texture data). By rearranging the
vertexes of a texture, we can effectively move the
data to another location on the texture.

We have tested this theory using single points for
each texture location and have found a 10x slow
down vs. using a four point quad. This loss shows
a trade off between the precision with which data
can be reorganized and computational speed.A
recommended strategy that balances this trade off
is to use a spreadsheet format (see:Texture Data
Objects) to organize multiple objects onto a single
texture. This approach allows us to create,
relocate, or remove a row or column at a time
using a single quad for each row or column. It
also allows us to modify or pull back rows or
columns of values to the CPU instead of pulling
the entire texture.

Reorganization (defragmentation) can be done by
changing the location of the corresponding
vertices (output location) of rows or columns that
are currently being used to ones that are not in
use.

9 Conclusion

While facing a variety of unique and complicated
challenges, we feel that the use of the GPU as a
common processor for applications has a
tremendous future in the graphics world and in
gaming especially. The challenge is up to us,
however, to rethink everything about how games
are made and our programming techniques. This
natural progression will lead us to a whole new
way of programming games where parallel
processing of object physics can eliminate many
of the traditional smoke and mirror techniques.
Moving away from these traditions and on to
more realistic technology will open the door for
truly immersive and interactive environments and
lead us to the point of rivaling the very world we
strive to emulate.

5

References

1. 3Dlabs Inc. Ltd. Ogl2particle.h.
2-22-05. 3-23-07. ttp://scottdouglas.net/
projects/glsl/fire/ogl2particle.h

2. Kilgrad M. J. Graphics Hardware
Functionality For Geometric Computations
With OpenGL. NVIDIA Corporation, 2002.

3. Lin, M. C., and Manocha, D. Interactive
Geometric and Scientific Computations Using
Graphics Hardware. 2003. SIGGRAPH
2003 Course Notes, vol. 11. ACM
SIGGRAPH, July, ch. 1--6.

4. Lindholm, E., Kilgard, M. J., And Moreton, H.
A User-Programmable Vertex Engine. Proc.
SIGGRAPH 2001 (July 2001), 149–158.

5. Peercy, Mark S., Marc Olano, John Airey , and
P. Jeffery Ungar. Interactive Multi-Pass
Programmable Shading. Proceedings of
SIGGRAPH 2000 (New Orleans, Louisiana,
July 23-28, 2000). In Computer Graphics,
Annual Conference Series, ACM SIGGRAPH,
2000.

6. Pharr, Matt (ed). GPU Gems2. R. Fernando,
Ed. Addison Wesley, Reading, MA. 2005.

7. Rost, Randi J. OpenGL Shading Language,
Second Edition. Addison-Wesley
Professional, January 25, 2006.

8. Rudolf, Florian. GLSL – An Introduction.
Neon Helium Productions. Article 21. 3-1-06.
3-23-07. http://nehe.gamedev.net/data/
articles/article.asp?article=21

9. Wloka, M. M. Implementing a GPU-Efficient
FFT. In ACM SIGGRAPH 2003. Course
Notes, pages 132-137. ACM SIGGRAPH,
August 2003.

6

