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Figure 1) Use of a wave form algorithm in the Vertex Shader 

Abstract

The current generation of gaming platforms 
(Xbox360, Play Station 3) includes phenomenally 
fast Graphics Processing Units (GPUs) that allow 
the developer to program directly on the GPU. 
This technology is called Shader Programming.  

Far from being a simple “airbrushing” technique, 
it has been shown that Shaders have all the 
necessary components for doing General Purpose 
computations on the GPU (GP-GPU).  Given the 
phenomenal speed of the GPU compared to the 
CPU and its reputation for beating Moore's law 
(3), this technology opens a doorway into a whole 
new paradigm of game development...if we can 
figure out how to use it.  

In common practice, all this blindingly fast 
computational power remains unharnessed in 
video games today.  This is best exemplified by 
the short falling of Play Station 3 (PS3) games, 
which occur despite the impressive statistics of 
the Cell processor.  

What follows is an outline of a general 
programming structure compatible with ATI, 

nVidia, and XBox GPUs.  Research suggests that 
the same techniques can be applied to the PS3, 
though development in this area is just being 
undertaken by the author.
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Architecture

1 Introduction

The most common reason for the lack of GPGPU 
computing in video games is the expense of 
moving information across the CPU/GPU bridge. 
It is often suggested that this is a major limiting 
factor and that GPU algorithms will be hindered 
until the transfer speed increases.  

We propose that the problem is not bridge speed, 
but a hesitation of the industry to jump into the 
deep end of the pool.  If enough computation is 
pushed over the GPU, we do not need to pull 
these values back to the CPU.  For most 
application developers, this will require a firm 
commitment to building a robust architecture for 
handling physics, as well as other modifiable 
variables, in shader code.  It also requires a new 
way of thinking in terms of exactly how a GPU is 
supposed to be used.
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2 Why The Fuss?

On a practical level, GPU development is hard. 
Even the best tools are still in their infancy, and 
debugging especially is tedious.  There are no text 
based outputs, no break statements, and rather 
cryptic error messages.  

As such, the best current approach seems to be to 
develop, debug, and stabilize a CPU physics 
model first.  While this will generally increase the 
development time of the project, it has benefits 
beyond simplifying development.   In particular, 
this code can be left in the application to allow 
support for lower model hardware by inserting a 
few switch statements based on hardware 
capabilities.

3 CPU Code Organization 

From a survey of examples, tutorials, and books 
on the subject, most shader development is 
currently being done on a case-by-case basis. 
Individualized algorithms are applied to each class 
of objects.  This is very much against the 
principles of code reuse and modularity.

We propose a more general architecture for 
organizing GPU resources in a manner that 
promotes function reuse across multiple objects.

One of the keys to constructing a general 
architecture for the GPU is the initial organization 
of CPU information.  By letting each object 
handle its own draw and update functions, the task 
of organizing becomes easier.

Information and methods to be ported to the GPU, 
such as an object's physics properties and 
methods, should be collected and organized using 
Object Oriented Program (OOP) encapsulation 
techniques.  Information passed to these methods 
can then be treated like signals and passed to the 
GPU in a robustly defined manner. 

In our game, EleMental, we have set forth the 
purpose of avoiding smoke and mirrors and 
creating a fully interactive environment.  This 
includes the manipulation of several thousand 
particles representing base elements such as earth, 
wind, and water.

We started this process by defining what we are 
calling a Mass object.  It contains all physics 
properties of an object such as position, mass, 
scale, velocity, and adhesion.  By creating a Mass 
object for every object in the environment, we 
maintain consistency of format, which will be 
beneficial to us as we begin converting these 
values into a GPU friendly data format.  The only 
physics methods that cannot be encapsulated in 
this way are those related to collision detection, 
which inherently must be able to compare 
multiple objects at a time.

Figure 2) Elemental by DarkWynter
A game based on real world physics and particle interaction

Once this organization is done, the process or 
porting to the GPU becomes simpler.  All that is 
left is to convert the Mass encapsulated physics 
functions into Shader code.  

Once this port is done, the collision functions can 
handle passing values to the shader, which 
handles updating the physics values on the GPU.
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4 GPU Data Organization

CPU to GPU data types come in two flavors:

Global Variables
Uniforms are standard read/write variables that 
are set by the CPU, and can be accessed by either 
the Vertex or Fragment Processors.  They retain 
their values until the CPU modifies them (7).  

Uniforms can also be used as control signals to a 
larger architecture.  This type of usage is 
addressed later in this paper.

Texture Data Objects
The use of textures as a medium for data can be 
complicated and should generally be ignored until 
an application begins bottlenecking at the 
CPU/GPU bridge.  

Except for RenderToTexture techniques, textures 
can be thought of as read-only data.  Textures are 
a good way to pass large sets of relatively static 
data to the GPU.  For organizational purposes it is 
suggested that each object be assigned to a row 
and each property of the object to a column or 
vise-versa.

Stream Structures
Stream values originate from the CPU with 
variables like position, texture coordinates, and 
normals, and are passed from vertex to fragment 
shader using varying variables.   These variables 
are interpolated by the rasterizer as they are 
passed from the Vertex to the Fragment processor. 
These values eventually come to rest in the frame 
buffer or frame buffer object depending on the 
programmer's decision.

It is very useful to organize these variables into 
separate structures for vertex input, vertex output, 
fragment input, and fragment output.  Larger 
applications may also want to include 
intermediate structures for organizing properties 
internal to the vertex or fragment shader.

By mapping these structures to the underlying 
semantics provided by the hardware (e.g. position, 
textureCoordinateN, colorN), we decrease the 
likelihood of “crossing wires” as we move 
information from the input semantic to the output 
semantic.  This translation is necessary because 
different semantics are used for the vertex input, 
vertex output, fragment input, and fragment 
output.  

For example, the Vertex Shader Input semantics 
include variables for tangent and binormal.  These 
values must be mapped to texCoord variables if 
they are to be sent to the Fragment Shader.  The 
number of variables that can be interpolated is 
very limited so a consolidated set of variables 
must be chosen wisely. 

We recommend including normals, binormals, 
tangents, screen vectors, and light vectors in this 
translation process.  These variables, along with 
the object space, world space, and view space 
matrices, provide a mathematical basis from 
which other values can be derived. 

5 GPU Instruction Sequencing

It is recommended that both the Input and Output 
structs for Vertex and Fragment shaders should be 
passed to their respective sub functions.  This 
ensures that each function has access to both the 
incoming variables and any previously calculated 
output variables.  The sequence of function calls 
is very important, as it must ensure that values 
calculated in one function do not clobber 
previously calculated values.

Both vertex and fragment shaders should begin by 
establishing a mathematical basis using the 
incoming stream structures.  This makes these 
values available to any other functions that require 
them and helps to maintain code cleanliness and 
organization.
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Vertex effects, in particular, must be carefully 
sequenced because the modification of a position 
or texture coordinate by one function can greatly 
affect another.  In general, position-modifying 
functions should be saved until last to guard 
against errors and clobbered values.

Fragment functions deal more with color and, 
thus, are a bit safer to work with.  It should be 
noted that each function should check for 
previously calculated output colors and use 
blending to modify the value.  In particular, it is 
suggested that lighting calculations be saved until 
after color modification functions have completed. 
This will ensure that the final output color is 
correctly lit. 

6 Control Signals
Simple CPU signals like the current position can 
be passed to the GPU using Uniform variables. 
For simple applications or applications with a 
small number of values to pass, this can be a very 
effective approach.

Uniform signals apply to the object in its entirety. 
World location and orientation parameters for a 
dynamic object are a good example of proper 
usage.  Other recommended uses include 
incrementors for controlling animations and 
parameters to scale effects based on temperature, 
intensity, or velocity. 

For applications where the overhead of 
transferring information to the GPU creates a 
bottleneck, the use of Texture Data Objects and 
RenderToTexture technology can provide a 
reasonable solution.  This requires either a second 
update pass, or the ability to render to multiple 
targets, one being the frame buffer and the others 
being the object textures.

7 Instructions, Clock Cycle  and 
RenderToTexture
RenderToTexture from the GPGPU perspective is 
often thought of as a data output mechanism 
providing feedback to the CPU.  

The basic idea is to take data from the texture into 
the shader, run computations on it, and render it 
onto the same texture using a unit-quad.  To 
ensure data integrity, a one-to-one texel-to-pixel 
ratio must be kept.  This can be done by setting 
the viewport size to that of the texture and 
rendering in orthographic mode.  Multiple 
textures can be updated per pass by applying 
multiple textures to the quad at render time and 
adjusting the viewport accordingly.

From an engineering perspective it should be 
noted that this technology marks the end of a 
clock cycle for the GPU processor.  Thinking in 
these terms leads us to the natural question of how 
much time is necessary to complete a complex 
instruction. Since shader code runs at different 
frequencies dependent upon the length and 
computational complexity of the code, we must 
also address the question of whether a RISC 
(Reduced Instruction) or CISC (Complex 
Instruction) style is preferable for general-purpose 
GPU architecture.  

From examining publicly available code, we have 
found that most shader programmers have applied 
the CISC methodology, creating long and 
complex shader programs to attach to their 
objects.  This approach has the natural 
disadvantage of reducing the re-usability of this 
code in other objects due to the specialization of 
its instruction.

A medium ground is found in modularizing a 
general shader into functional units that can be 
called from the main program.  This is an 
effective strategy for increasing the portability and 
reusability of shader code, and is the strategy that 
we have adopted in EleMental.  It should be noted 
that this is not a very effective strategy for 
GPGPU heavy applications, however, because it 
is difficult to modify the sequence in which 
function calls are made while ensuring that 
variable clobbering does not occur.
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Another approach makes the observation that 
shading languages are still very similar to the 
assembly languages they are built on.  By using a 
RISC approach to shader creation, we can create a 
small and complete set of independent shader 
“instructions”, which run much faster than the 
traditionally long and complex shaders.  

By using RenderToTexture at the end of each 
shader call, it is possible to batch process a large 
number of shader “instructions” in-between 
graphical frames.  This appears to be a very 
effective strategy when using 
VertexBufferObjects to drive the process, as the
overhead of sending vertexes, normals, and 
coordinates across the expensive CPU/GPU 
bridge is avoided.  

Processing values this way requires extensive use 
of the discard keyword in the shader to avoid 
overwriting values that are not applicable to a 
given operation.  

8 GPU Memory Management
For applications with extremely volatile data, 
memory management techniques must be applied 
to the GPU textures to reduce fragmentation, 
which is caused by objects being added and 
removed from the textures.  
.  
A traditional approach is to pull this information 
back to the CPU, reorganize the data, and push it 
back to the GPU.  This is extremely slow.  To 
maximize efficiency, we want to reorganize the 
texture data on the GPU itself.  A solution to this 
problem can be found in the vertex processor.  

We must first note that a there is a relationship 
between the Texture Coordinate (input location of 
texture data) and the Vertex Coordinate (output 
location of the texture data).  By rearranging the 
vertexes of a texture, we can effectively move the 
data to another location on the texture.  

We have tested this theory using single points for 
each texture location and have found a 10x slow 
down vs. using a four point quad.  This loss shows 
a trade off between the precision with which data 
can be reorganized and computational speed.A 
recommended strategy that balances this trade off 
is to use a spreadsheet format (see:Texture Data 
Objects) to organize multiple objects onto a single 
texture.  This approach allows us to create, 
relocate, or remove a row or column at a time 
using a single quad for each row or column.   It 
also allows us to modify or pull back rows or 
columns of values to the CPU instead of pulling 
the entire texture.

Reorganization (defragmentation) can be done by 
changing the location of the corresponding 
vertices (output location) of rows or columns that 
are currently being used to ones that are not in 
use.   

9 Conclusion

While facing a variety of unique and complicated 
challenges, we feel that the use of the GPU as a 
common processor for applications has a 
tremendous future in the graphics world and in 
gaming especially.  The challenge is up to us, 
however, to rethink everything about how games 
are made and our programming techniques.  This 
natural progression will lead us to a whole new 
way of programming games where parallel 
processing of object physics can eliminate many 
of the traditional smoke and mirror techniques. 
Moving away from these traditions and on to 
more realistic technology will open the door for 
truly immersive and interactive environments and 
lead us to the point of rivaling the very world we 
strive to emulate.
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